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Abstract 
 

Public Private Partnerships (PPP) contracts bring together the public and the 
private sectors in order to provide public service and to develop public 
infrastructure. If implemented appropriately, these contracts may modernize 
the public procurement and help governmental agencies overcome the 
budgetary constraints. One of the key success factors of PPP contracts is the 
appropriate risk sharing between the public and the private sectors. The 
Minimum Revenue Guarantee (MRG) is a well spread solution for revenue risk 
mitigation. The government grants the private sector a minimum revenue that 
ensures the project profitability. The MRG is a real option with the possibility 
of multiple exercises before the end of the project. This paper presents a 
methodology for determining a lower and an upper bounds value for dynamic 
minimum revenue guarantee contracts where the exercise dates should at least 
be separate by a certain refraction period. 
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Introduction

The development of Public Private Partnerships has helped governmental entities to fund new

projects in order to fulfill the increasing demand for public service provision. The PPP scheme

has known a tremendous success in both developed and developing countries. Its application

has made a huge contribution to the development of infrastructure worldwide. The system pro-

vides an effective route to mobilize private funds and business expertise for the development of

public infrastructure.

PPP are generally conducted under a project finance framework, where a Special Purpose Ve-

hicle (SPV) is in charge of the project’s funding, constructing and maintaining for a certain

period of time. Afterwards, the project is transferred back to the public entity. The SPV is

funded by both equity and non-recourse debt with a high ratio of debt to capital ranging com-

monly from 70% to 95%. The project success under project finance schemes depends heavily

on the project’s ability to generate sufficient revenue to operate and maintain the structure, to

serve debt and to remunerate equity. Unpredictability of future demand, the irreversibility of

the investment combined with the long term commitment make such projects very risky. Public

entities have, therefore, to provide enough incentive for private bidders to make the project ap-

pealing and to ensure that they are able to recoup a reasonable return on their investment.

Revenue risk is one of the most significant risks in PPPs. It may lead to huge consequences on

the project company. The cash flow arising from the project may turn out insufficient to ensure

its financial viability. In that case, the public service provision may be considerably affected

and in some extreme cases shut down. The revenue risk has, generally, no impact on the gov-

ernmental entity budget. In contrast, the political impact may be substantial, if end users are

directly affected by a low-quality or an interrupted service. Imagine for a while the whole water

provision system in a city shut down.

Under such circumstances, the government has to be cooperative and public deciders are gen-

erally willing to bail out the project’s company in order to avoid political consequences and to

assure the continuity of the public service provision. The PPP scheme is, actually, a relation-

ship specific investment as it was pointed out by (Dong and Chiara, 2010). In other words, the

PPP contract is a cooperative game where the interest of both players lies in positive interaction

with variable rewards that depend on each party bargaining power and her willingness to make

concessions.

The bail out process is, generally, done via the renegotiation of the contract initial terms which
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requires a lot of resources and leads to high transactional costs. Incorporating risk mitigation

mechanisms in the initial contract should help allocating these lost resources to other public

projects. The most known solution among practitioners and academics for demand risk sharing

in PPPs is the Minimum Revenue Guarantee contract. Under such commitments, the public

entity secures a certain minimum revenue to maintain the project’s financial viability. This

guarantee may be seen as a real-option that the public entity offers to the SPV free of charges.

The option being free, does not mean, in any case, that it does not add value to the public entity.

Its cost may be in fact, counterbalanced by the social benefit that the continuation of the public

service provision leads to.

Once a revenue guarantee is implemented within the PPP contract, it increases the project’s

value and enhances, consequently, its appeal for private bidders. (Brandao and Saraiva, 2008)

mentioned, for instance, that the Costenera Norte toll in Chile had no bidders when it was first

auctioned in 1998. Only in 2000, after the government support was included, the road was

successfully bid. The importance of the MRGs should not decrease the vigilance of the public

entities and should not lead to unreasonable practices. (Irwin, 2007) reported that some govern-

ments did not even account for such guarantees. The MRG contract nature as a risk mitigation

mechanism should be dealt with very carefully since it may bring several future liabilities and

huge fiscal burdens for tax-payers. Proper evaluation tools are, therefore, needed to develop

appropriate provision and accounting mechanisms.

The valuation of Minimum Revenue Guarantees has been an active subject of research during

the last years. The main trend of researchers, among them (Dailami et al., 1999; Brandao and

Saraiva, 2008; Ashuri et al., 2011; Iyer and Sagheer, 2011; Cheah and Liu, 2006), has struc-

tured the contract in a "static" manner: the private partner has to fix, prior to the beginning of

the contract, her potential exercise dates (the dates when she will redeem her guarantee). Under

this setting, the contract is similar to a portfolio of European options maturing at each chosen

exercise date. This structure makes the contract very hard to manage because of the difficulty to

select adequate exercise dates before the contract’s signing. To remedy this inefficiency, a high

number of exercise rights should be offered to the private partner which increases the option

cost and the public exposure to risk.

Another trend, that this work follows, was initiated by (Chiara et al., 2007). The guarantee

contract may leave the freedom to the decision maker to select her exercise dates during the

project’s lifetime. The private entity can then take advantage from the information revealed
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over time. This feature makes the contract more flexible. It allows, moreover, to design the

guarantee with a lower number of exercise rights which limits the exposure of the public entity

to demand risk.

The American contract is more suitable for the private entity, its cost is, however, higher to

the public entity. This work proposes a novel contract that presents a certain trade-off between

flexibility and cost. For this purpose, the American-style contract is generalized by constrain-

ing the dates at which the guarantee can be redeemed. Under the proposed framework, two

consecutive exercise rights has to be at least distant by a certain period δ referred to as a refrac-

tion period . Its introduction allows to come up with more innovative approaches during the

contract design. The provision for the guarantee can be, moreover, spread over several years.

This feature should, then, lead to an easier budgetary management and provides a better visibil-

ity for the guarantee’s cash flows. The MRG with a refraction period lies somewhere between

the European contract and the American one and should help both parties reaching "win-win"

agreements.

Inspired by the work on American and swing options (Rogers, 2002; Haugh and Kogan, 2004;

Andersen and Broadie, 2004; Meinshausen and Hambly, 2004; Schoenmakers, 2012, 2009;

Bender, 2011; Bender et al., 2013), this work adopts a primal and a dual valuation approach.

The proposed methodology aims to derive reliable bounds on the contract value. The primal ap-

proach determines a lower bound on the guarantee value using Monte Carlo Simulation and re-

gression technique introduced by (Longstaff and Schwartz, 2001) as it was suggested in (Chiara

et al., 2007). Starting from the results of the primal problem, the dual approach determines an

upper bound on the option value. It is based on information relaxation introduced in (Brown

et al., 2010) and relies on Martingale inequalities introduced in (Bender, 2011; Bender et al.,

2013) for swing options with refraction periods. The use of the dual approach is essential for

Minimum Revenue Guarantees valuation since it allows to assess the quality of the determined

value especially in the absence of a benchmark because of the scarcity of market data.

The remainder of this paper unfolds as follows. A model for the guarantee contract is presented

in section 1. Section 2 tackles the contract’s valuation. The methodology is then applied, in

section 3, to a PPP project. A conclusion is, finally, drawn in 4.
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1 The dynamic MRG contract model

Under a Public Private Partnership contract, a public entity entrusts a third party (a private en-

tity) with the building, maintaining and operating of a public infrastructure. Generally a Special

Purpose Vehicle is established in order to conduct all the operations related to the project. There

are several forms for the SPV to be rewarded for her services. The most common one is the

right to collect tolls during a certain period of time. A PPP contract with the right to charge tolls

is often referred to as a concession agreement. The duration of the contract T is known as the

concession duration. The revenue that arises from the project is not known before the beginning

of the concession and may be insufficient to maintain the financial viability which threatens

the project success and the public service provision. For low-demand projects, the public en-

tity may offer some guarantees. This development focuses on Minimum Revenue Guarantees.

Such contracts grants the SPV the revenue shortfalls occurring at certain years of the conces-

sion. For this purpose, the two parties agree upon a certain minimum revenue guaranteed Kt

for each year until the end of the operation phase t ∈ {1, · · · , T}. The project’s revenue is

uncertain and follows a Markovian stochastic process {Rt}Tt=0 which evolves in a probability

space (Ω,F ,P). If the project’s revenue falls below the threshold Kt for a certain year, the

SPV has the right and not the obligation to claim a compensation equal to the revenue shortfall

Zt = max (0, Kt −Rt). The compensation structure is similar to a financial put option on the

underlying asset Rt with an exercise strike of Kt. The governmental agency may offer the SPV

a full coverage contract, under which she can claim all the revenue shortfalls during the oper-

ation phase. In other cases, the contract may offer a limited number of exercise rights n < T .

Let (τ1, · · · , τn) be the dates at which the guarantee is claimed. They can be either fixed before

the beginning of the contract in an European style, or chosen during the contract’s life in an

American style. Under the European contract, the dates are assumed, without loss of generality,

to be chosen at the beginning of the concession 1 (i.e τi = i, i = 1, · · · , n) . The value of the

contract V static is then equal to the value of a portfolio of n European put options maturing at

τ1, · · · , τn with respective exercise strikes of Kτ1 , · · · , Kτn :

V static
t (n) = Et

[
n∑
i=1

Zτi

]
, (1)

1This assumption is motivated by the fact that the uncertainty is higher at the beginning of the contract, although
this may still arguable.
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where Et denotes the conditional expectation based on the historical observations up to t:

Et[.] = E[.|Ft].

Under the American contract, the SPV has the freedom to choose the exercise dates during

the contract life. She can, hence, adapt her exercise dates according to the realizations of the

project’s revenue. Under this setting, the SPV manages the contract via a set of stopping time

(τ1, · · · , τn) that is referred to as an exercise policy. This policy is unknown at the beginning

of the contract and depends on the realizations of the revenue (i.e for the realization of two

different scenarios, the SPV can select two different sets of exercise dates. Under the European

contract, however, the dates are always fixed). This policy is determined in a non-anticipative

manner since the private partner is not able to foresee the future. Under the proposed frame-

work, two consecutive exercise dates should be at least distant by a refraction period δ ∈ N.

The maximal number of exercise rights that the SPV can be benefit from is nmax(δ) = bT
δ
c.bxc

denotes the floor function of the real valued variable x. The set of admissible exercise policies

Πt (n, δ) at time t is given by :

Πt (n, δ) =
{

(τ1, · · · , τn) ∈ [t, T ] ∪ {+∞} : τi ≥ τi+1 + δ, i = 1, · · · , n
}
. (2)

Some exercise rights can go unused, one can assume that they are exercised at +∞ and sets

Z+∞ ≡ 0. The contract guarantee fair value Vt (n, δ) is the maximal expected compensations

obtainable by the private partner over the life of the project through non-anticipative admissible

policies:

Vt(n, δ) = sup
πt(n,δ)∈Πt(n,δ)

Et

[
n∑
k=1

Zd
τk(t,n)

]
, (3)

where πt(n, δ) refers to an exercise policy, Zd
τk(t,n) = Zτk(t,n)

Bt
Bτk(t,n)

is the discounted com-

pensation to time t by the means of a bank account {Bi}Ti=0. For the contract value to ex-

ist, the compensation Zt has to satisfy: E [maxt |Zt|] < +∞. For n > nmax(δ), one has

Vt(n, δ) = Vt(nmax(δ), δ).

If all the allowed exercise rights are exercised prior to t , the decision maker has no choice but

continuing until the end of the concession. Otherwise, she chooses among two decisions:

• Claim a compensation Zt and hold a contract with n − 1 rights where she can exercise

her (n− 1)th right at least after a period δ,

• Continue without exercising and hold the same contract where she can exercise her nth
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right starting from the next period.

Let Qn
t+1 be the continuation value one step later for the option with n rights. It measures the

expected reward if no exercise is made. Similarly, one introduces the continuation value Qn−1
t+δ

for the option with one exercise right less at δ steps later:


Qn
t+1 = Et

[
Bt

Bt+1

Vt+1 (n, δ)

]
,

Qn−1
t+δ = Et

[
Bt

Bt+δ

Vt+δ (n− 1, δ)

]
.

(4)

The decision maker’s behavior can be modeled via an exercise indicator It (n, δ) as follows:

It (n, δ) =

 0 if Zt +Qn−1
t+δ < Qn

t+1,

1 otherwise,
(5)

where 0 stands for continuation and 1 for exercise.

2 Valuation of the MRG contract

2.1 The primal problem: determining a good exercise policy

The optimal exercise policy cannot be reached in general, however, one can determine a good

combination of stopping times that approximates the real-option value. The contract valuation

can be done by the means of dynamic programming. The idea is to model the decision process

recursively. At the expiration date, the contract value is equal to the terminal compensation:

VT = ZT . From this point, one can go backward in time using the following Bellman equation:

VT = ZT ,

Vt = max
(
Zt +Qn−1

t+δ , Q
n
t+1

)
.

(6)

The computation of the two continuation values within a Monte Carlo simulation can be cum-

bersome. Thanks to the seminal work of (Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy,

2001; Carriere, 1996), this computational burden can be alleviated. This work relies on the

methodology of (Longstaff and Schwartz, 2001), where the continuation values are approxi-

mated by the means of a regression on the current state space. In other words, future informa-

tion can be transformed to present information by the means of a regression that models the
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expertise and knowledge of the decision maker. An approximation Q̃n
t+1 (resp. Q̃n−1

t+δ ) of Qn
t+1

(resp. Qn−1
t+δ ) is then obtained as follows:


Q̃n
t+1 =

Nb∑
r=1

αnr,tΨr,t(Rt),

Q̃n−1
t+δ =

Nb∑
r=1

βn−1
r,t Ψr,t(Rt),

(7)

where {Ψr,t(.)}Nbr=1 is a set of Nb basis functions. The coefficients
{
αnr,t
}Nb
r=1

and
{
βn−1
r,t

}Nb
r=1

are

determined by least squares regressions:
{
αnr,t
}Nb
r=1

= argmin

{
Ns∑
h=1

∣∣∣∣Qn
t+1,h − Q̃n

t+1,h

∣∣∣∣2} ,
{
βn−1
r,t

}Nb
r=1

= argmin

{
Ns∑
h=1

∣∣∣∣Qn−1
t+δ,h − Q̃

n−1
t+δ,h

∣∣∣∣2} , (8)

where Ns is the number of Monte Carlo simulations. A lower bound value V t (n, δ) and an

approximate exercise indicator Ĩt (n, δ) can be obtained replacing the continuation values by

their approximations in (5) and (6) . A near optimal exercise policy can be determined as

follows: 
τ̃n = inf

{
t|Ĩt (n, δ) = 1

}
,

τ̃k = inf
{
t ≥ τ̃k+1 + δ, |Ĩt (k, δ) = 1

}
, k = n− 1, · · · , 1.

(9)

In order to avoid any anticipative bias that may arise from the use of future information in the

regression step, it is preferable to use two realizations of the revenue process {Rt}Tt=0. The first

set is used to determine the regression coefficients which are applied to the second set to model

the decision maker’s behavior (Glasserman, 2003).

2.2 The dual problem: determining a good upper bound to the contract value

Relaxing the non-anticipativity constraint imposed in the primal problem leads to an upper

bound on the contract value. A natural relaxation is to allow the decision maker to foresee all

the future. In that case, an upper bound can be determined as follows:

Vt(n, δ) ≤ Et

[
max

πt(n,δ)∈Πt(n,δ)

n∑
k=1

Zd
τk(t,n)

]
. (10)
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In general, this bound is of a poor quality. However, it can be improved by penalizing the

use of future information in the optimization process (Brown et al., 2010). This work relies

on Martingale penalties introduced in (Bender, 2011; Bender et al., 2013). These penalties are

determined via the Doob-Meyer decomposition of the contract value. An improved upper bound

can be determined as follows:

Vt(n, δ) ≤Et

[
sup

(t1,...,tn)∈Πt(n,δ)

{
n−1∑
k=1

Zd
tk
−Mk

tk
+Mk

tk+1
+ Aktk+1+δ

− Etk+1

[
Aktk+1+δ

]
+ Ztn −Mn

tn +Mn
t

}]
,

(11)

where
{
Mk

t

}n
k=1

and
{
Akt
}n
k=1

are respectively a family of martingales and integrable pre-

dictable processes starting from 0 at t = 0. Furthermore, if
{
M∗k

t

}n
k=1

and
{
A∗kt
}n
k=1

are

obtained via the Doob-Meyer decomposition of the Snell envelopes {Vt (k, δ)}nk=1, then the up-

per bound matches with the contract optimal value. For δ = 1, the predictability of the processes

leads to the dual formulation of (Schoenmakers, 2009, 2012):

Vt(n, 1) ≤Et

[
sup

t1,...,tn)∈Πt(n,1)

{
n∑
k=1

Zd
tk
−Mk

tk
+Mk

tk+1

}]
, (12)

with tk+1 ≡ t. Another dual formulation for the case δ = 1 can be found in (Meinshausen and

Hambly, 2004) for the marginal value ∆Vt(n) = Vt(n+ 1, 1)− V (n, 1):

∆Vt(n) = inf
πt(n−1)

inf
Mj∈M0

{
Et

[
max

j∈T\{τn−1,...,τ1}
(Zd

j −Mn
j +Mn

t )
]}

, (13)

where πt(n − 1) is an exercise policy for the contract with n − 1 exercise rights and T =

{t, · · · , T}. The infimum is reached for the optimal stopping policy and the Martingale resulting

from the Doob-Meyer decomposition of the marginal value.

The optimization procedure in (11) can be very time consuming especially in the case of a high

number of exercise rights and long maturities. The problem structure allows to conduct the

optimization recursively. One can introduce for this purpose:

λi,n,δt = max
j0=t≤j1≤j2+δ≤...≤jn−i+δ

n−i∑
k=1

Zd
jk

+Mn−i−k+1
jk−1

−Mn−i−k+1
jk

+ Ik>1

(
An−i−k+1
tjk−1

+δ − Etjk−1
An−i−k+1
tjk−1

+δ

)
,

(14)
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and one has by construction:

Vt(n, δ) ≤ E
[
λ0,n,δ
t

]
. (15)

λi,n,δt can be determined recursively as follows:

λi,n,δt = max

{
λi,nt+1 −Mn−i

t+1 +Mn−i
t ,

Zd
t + λi+1,n

t+δ −M
n−i−1
t+δ +Mn−i−1

t + An−i−1
t+δ − EtAn−i−1

t+δ

}
.

(16)

A detailed proof for this simplification for a more general case can be found in (Bender et al.,

2013). The determination of the optimal Martingales and predictable processes is as hard as the

determination of the optimal policy, but an approximation can be built from the lower bound

value and this leads to an upper bound V t(n, δ) on the contract value. The algorithms used in

this work are the same as the ones presented in the original papers.

Once the upper and lower bounds are computed, one can construct a confidence interval at

(1− α)% for the option price:

[
V 0(n, δ)− β σn√

Nl

, V 0(n, δ) + β
σn√
Nu

]
, (17)

where σn (resp. σn ) is the volatility of the lower (resp. upper) bound estimate, Nl(resp Nu)

is the number of simulations used for the computation of the lower (resp. upper) bound and

β = φ−1(1− α
2
) with φ−1 is the inverse cumulative distribution function of the standard normal

distribution.

3 Numerical experiments

This section aims to illustrate the described methodology via a PPP project. The construction

duration is estimated at 3 years for a total cost of 300 Million e (present value). The construc-

tion costs inflation is modeled by a symmetric triangular distribution between 1% and 3%. The

SPV is funded by equity (15%) and non-recourse debt (85%). The lenders grant the SPV a

grace period during the construction of the project where she does not reimburse capital and

pays only an interest of 3%. Once the construction is over, the interest on the borrowed capital

is of 5.5%. The debt’s maturity is of 25 years starting from the construction termination. The
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expected return on equity is determined using the Capital Asset Pricing Model and is of 10% 2.

The SPV is allowed to collect tolls during 30 years of the 40 years of the project’s life. After

the construction is over, the project requires an annual cost of 2 Million e for operation and

maintenance. The inflation of this cost is modeled by a symmetric triangular distribution be-

tween 1% and 2%. The tax rate is 33%. The project’s revenue is assumed to follow a Geometric

Brownian motion:

dRt = µRtdt+ σRtdWt, (18)

where µ =1% is the annual expected revenue increment, σ =7% is the revenue volatility and

Wt is a Wiener process. The initial value of the revenue is estimated at 20 Million e.

The project’s revenue is not sufficient to maintain its financial viability. The public entity is,

therefore, willing to provide a minimum revenue guarantee during certain years of the conces-

sion. The guaranteed revenue is given by K0 = 19 and Kt+1 = 1.02Kt.

3.1 The contract value

First lets determine the MRG contract "intrinsic" value from the private partner perspective.

This process allows to validate the use of the regression approach and to assess the gap be-

tween the lower and upper bounds on the contract’s value. The numerical experiment is based

on 50 000 Monte Carlo simulations to determine the regression coefficients and to compute

the lower bound , 50 simulations for the upper bound calculation and 200 simulations for the

nested Monte Carlo simulations required for the approximations of the Martingales and the in-

tegrable processes (Meinshausen and Hambly, 2004; Schoenmakers, 2012, 2009; Bender et al.,

2013). The regression is conducted using the first 7 Laguerre polynomials, as well as the payoff

functions. Figure 1 provides a comparison of the European contract with the flexible contracts

with refraction periods of δ = 1, 2, 3. One can see that the introduction of the refraction pe-

riod reduces the flexible contract value. The superiority towards the European contract is still

maintained in the region of feasible number of exercise rights3. Table 1 presents the lower

and upper value for the MRG contract with δ = 1. It permits also to assess the quality of the

dual formulations of (Meinshausen and Hambly, 2004) and (Schoenmakers, 2012) in the case

2Here we work under the real world measure and assume that the project’s risk is similar to the company’s risk.
The risk premium is derived from the CAPM. The valuation provided is non consistent with market, however the
approach permits to assess the financial viability of the project in the real world and to take adequate measures to
manage the project’s risk. Under the risk neutral measure, such approach is not possible due to the deformation of
the stopping times which changes the financial indicators of the project and should lead to erroneous decisions.

3{n ∈ N |n ≤ nmax(δ)}
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of MRG contracts. The numerical experiment shows that the latter approach outperforms the

former. In fact, in (Schoenmakers, 2012) the optimization is over the set of approximated mar-

tingales and is conducted in one step. However, in (Meinshausen and Hambly, 2004), there are

n optimizations done simultaneously on approximated martingales and approximated stopping

times which increases the upper bias of the contract value. Table 2 presents the lower and upper

bounds for the contracts with refraction periods: δ = 2, 3, 4. One can see that the dual and

upper bound are always tight, and the set of parameters used for the regression can be validated.

n V 0 V0 V0 C.I at 99%
Meinshausen & Hambly Schoenmakers Schoenmakers

1 1.378 1.378 1.378 [ 1.374 , 1.379 ]
2 2.726 2.745 2.728 [ 2.718 , 2.731 ]
3 4.037 4.087 4.043 [ 4.026 , 4.050 ]
4 5.311 5.388 5.321 [ 5.296 , 5.330 ]
5 6.545 6.651 6.558 [ 6.526 , 6.571 ]
6 7.738 7.871 7.760 [ 7.716 , 7.775 ]
7 8.890 9.050 8.914 [ 8.864 , 8.932 ]
8 9.998 10.186 10.028 [ 9.969 , 10.046 ]
9 11.064 11.280 11.091 [ 11.032 , 11.114 ]

10 12.085 12.329 12.142 [ 12.050 , 12.172 ]
11 13.061 13.336 13.093 [ 13.023 , 13.121 ]
12 13.993 14.300 14.037 [ 13.952 , 14.074 ]
13 14.879 15.218 14.934 [ 14.836 , 14.969 ]
14 15.721 16.093 15.786 [ 15.675 , 15.825 ]
15 16.518 16.925 16.608 [ 16.469 , 16.656 ]
16 17.271 17.718 17.391 [ 17.220 , 17.451 ]
17 17.981 18.463 18.103 [ 17.928 , 18.171 ]
18 18.649 19.171 18.782 [ 18.593 , 18.854 ]
19 19.273 19.844 19.436 [ 19.215 , 19.520 ]
20 19.856 20.480 20.038 [ 19.796 , 20.126 ]
21 20.395 21.073 20.582 [ 20.333 , 20.666 ]
22 20.892 21.630 21.094 [ 20.828 , 21.184 ]
23 21.345 22.153 21.530 [ 21.279 , 21.617 ]
24 21.755 22.639 21.953 [ 21.687 , 22.049 ]
25 22.120 23.085 22.355 [ 22.050 , 22.448 ]
26 22.438 23.495 22.641 [ 22.366 , 22.737 ]
27 22.706 23.862 22.907 [ 22.633 , 23.007 ]
28 22.920 24.186 23.130 [ 22.845 , 23.229 ]
29 23.073 24.453 23.277 [ 22.997 , 23.376 ]

Table 1: comparing the dual bounds of Meinshausen and Hambly and Shcoenmakers
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n δ = 2 δ = 3 δ = 4

V 0 V0 V 0 V0 V 0 V0

2 2.684 2.715 2.641 2.672 2.598 2.622
3 3.912 3.948 3.783 3.794 3.645 3.671
4 5.056 5.083 4.793 4.820 4.511 4.590
5 6.111 6.155 5.669 5.702 5.209 5.335
6 7.077 7.120 6.416 6.487 5.735 5.996

Table 2: Lower and upper bounds of MRG contracts value with different refraction periods
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Figure 1: comparing the contract value for different refraction periods

3.2 MRG’s impact on the financial viability of the project

This part examines the MRG impact on the project’s financial viability. For this purpose, lets

introduce the following financial indicators which are commonly used in PPP projects:

• E[NPV s]: the expected net present value of the project’s sponsors. It is governed by the

dividends that the SPV generates after she meets all her legal obligations,

• E[NPV g]: the expected net present value of the public entity. It is mainly governed by

the guarantees that she provides and her cash flows once the project is transferred. The

cash flows are discounted at the risk-free rate rg =4%. The E[NPV g] does not account

for the social benefit and public deciders may be willing to accept a negative NPV g,

• E[E[DSCRt]: the expected value of the average Debt Service Coverage Ratio over

the debt’s life. The project’s banakability is an increasing function of E[E[DSCRt].

The project has at least to fulfill the following constraint to be accepted by lenders:
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E[E[DSCRt] ≥ 1 4.

For a detailed analysis on discounted cash flow analysis in Public Private Partnerships, inter-

ested readers can refer to (Zhang, 2005; Bakatjan et al., 2005; Ranasinghe, 1996).

Figure 2 illustrates the impact of the MRG on the NPV s. It shows the enhancement of the

project’s return as the number of exercise rights n grows. In figure 3, one can see the opposite

effect on the NPV g. The MRG contract allows also to boost the project’s bankabilty as ex-

posed in figure 4. The profitability constraint E[NPV s] = 0 divides figure 2 into two distinct
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Figure 2: Comparing the impact of the MRG contract with different numbers of exercise rights and
different refraction periods on the NPV s.
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Figure 3: Comparing the impact of the MRG contract with different numbers of exercise rights and
different refraction periods on the NPV g.

4A higher minimal value can be imposed see (Zhang, 2005).
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Figure 4: Comparing the impact of the MRG contract with different numbers of exercise rights and
different refraction periods on the mintDSCR.

regions. The upper one contains the feasible contracts. The government can accept contracts

for which E[NPV g] < 0 since the social benefit is not accounted for 5. One can see that the

"near" optimal6 contract from the governmental entity’s perspective can be structured with 3

different sets: (n1 = 7, δ1 = 1), (n2 = 8, δ2 = 2), (n3 = 9, δ3 = 3). The government faces then

a trade-off between the number of exercise rights that she wants to offer and a better budgetary

visibility that a higher refraction period guarantees. The final choice results from negotiation

between the two parties. In this regard, the literature on the optimal design of the contract and

the optimal risk sharing in PPP contracts is still scarce. The design can be seen as a bi-objective

optimization procedure that yields a set of optimal contracts. Among them, the final contract is

determined based on negotiation.

4 Conclusion

Minimum revenue guarantees are effective for risk sharing between the public and the private

sectors in Public Private Partnerships contracts. This work extends the dynamic MRG intro-

duced in (Chiara et al., 2007) by incorporating a refraction period that separates two consecutive

exercise dates. The valuation of the guarantee was conducted in two steps. First, a primal valua-

tion determines a near optimal exercise policy. Second, a dual valuation derives an upper bound

5The public tolerance for a negative net present value remains a political decision and depends on the perception
of the project by the pubic decider

6The optimal contract is the solution of the maximization of the public net present value with respect to the
constraint of private profitability. Note that the minimum revenue guaranteed can be included in the optimization
program. Here, it is kept constant
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on the contract’s value. The proposed methodology was illustrated on a PPP project. The nu-

merical experiment shows that the dual-approach is quite effective and leads to tight confidence

interval on the guarantee value. It illustrates, furthermore, the effect of the refraction period on

the project’s financial viability. The introduction of the refraction period reduces the cost of the

guarantee while maintaining a certain flexibility on the choice of the exercise dates. This should

help design effective risk sharing contracts. The proposed framework is still applicable if the

MRG contract is combined with a cap on the excess reward since the two contingent claims are

mutually exclusive.
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